Answer
$\dfrac{2}{5}$ or, $40 \%$
Work Step by Step
The probability that $P$ lies on the segment $\overline{GK}$ can be computed as:
$P(\text{point on $\overline{GK}$})=\dfrac{GK}{AK}$
Where $GK=10-6=4$ and $Ak=10-0=10$
Now, $P(\text{point on $\overline{GK}$})=\dfrac{GK}{AK}=\dfrac{4}{10}=\dfrac{2}{5}$ or, $40 \%$