Answer
$1$ or, $100 \%$
Work Step by Step
The probability that $P$ lies on the segment $\overline{AK}$ can be computed as:
$P(\text{point on $\overline{AK}$})=\dfrac{AK}{AK}$
Where, $AK=10-0=0$ and $Ak=10-0=10$
Now, $P(\text{point on $\overline{AK}$})=\dfrac{AK}{AK}=\dfrac{10}{10}=1$ or, $100 \%$