University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.7 - Improper Integrals - Exercises - Page 471: 64

Answer

$\dfrac{\pi}{2}$

Work Step by Step

We can rewrite as: $\dfrac{1}{e^{x}+e^{-x}}=\dfrac{e^x}{(e^{x})^2+1}$ $\int_{-\infty}^{\infty} \dfrac{dx}{e^{x}+e^{-x}}=\int_{-\infty}^{0}\dfrac{dx}{e^{x}+e^{-x}} +\int_{0}^{\infty} \dfrac{dx}{e^{x}+e^{-x}} $ and $\int_{-\infty}^{\infty} \dfrac{dx}{e^{x}+e^{-x}}=\lim\limits_{a \to -\infty} \int_{a}^{0}\dfrac{dx}{e^{x}+e^{-x}} + \lim\limits_{b \to \infty} \int_{0}^{b} \dfrac{dx}{e^{x}+e^{-x}}....(1)$ Let $u =e^x $ and $du =e^x dx$ $\int \dfrac{dx}{e^{x}+e^{-x}}=\int \dfrac{du}{u^2+1}=\tan^{-1} u+C=\tan^{-1} (e^x) +C$ Here, $C$ is an arbitrary Constant. Equation (1) becomes: $$\int_{-\infty}^{\infty} \dfrac{dx}{e^{x}+e^{-x}}=\lim\limits_{a \to -\infty} \int_{a}^{0}\dfrac{dx}{e^{x}+e^{-x}} + \lim\limits_{b \to \infty} \int_{0}^{b} \dfrac{dx}{e^{x}+e^{-x}} \\=\lim\limits_{a \to -\infty} [\tan^{-1} (e^x)]_{a}^{0}+\lim\limits_{a \to \infty} [\tan^{-1} (e^x)]_{0}^{b} \\=\lim\limits_{a \to -\infty} [\tan^{-1} (1)-\tan^{-1} e^a]+\lim\limits_{a \to \infty} [\tan^{-1} (e^b)-\tan^{-1} (1)] \\=(\dfrac{\pi}{4}-0)+(\dfrac{\pi}{2}-\dfrac{\pi}{4}) \\=\dfrac{\pi}{2}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.