University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.7 - Improper Integrals - Exercises - Page 471: 13

Answer

$0$

Work Step by Step

Re-arrange the given integral as follows: $\int_{-\infty}^{0} \dfrac{2xdx}{(x^2+1)^2}+\int_{0}^{\infty} \dfrac{2xdx}{(x^2+1)^2}=\lim\limits_{p \to -\infty}\int_{p}^{0} \dfrac{2xdx}{(x^2+1)^2}+\lim\limits_{q \to \infty}\int_{0}^{q} \dfrac{2xdx}{(x^2+1)^2}$ ....(1) Plug $u(x)=x^2+1 \implies du=2x dx$ and $u(p)=p^2+1; u(q)=q^2+1$ Then, we have $\int_{p^2+1}^{1} \dfrac{du}{u^2}+\int_{1}^{c^2+1} \dfrac{du}{u^2}=[\dfrac{-1}{u}]_{p^2+1}^{1}+[\dfrac{-1}{u}]_{1}^{q^2+1}$ Thus, equation (1) becomes $\lim\limits_{p \to -\infty}(\dfrac{1}{p^2+1}-1)+\lim\limits_{q \to \infty}(1-\dfrac{1}{q^2+1})=-1+1=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.