University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.7 - Improper Integrals - Exercises - Page 471: 21

Answer

$-1$

Work Step by Step

Here, we have $\lim\limits_{a \to -\infty}\int_a^{0} \theta e^{\theta} d\theta=\lim\limits_{a \to -\infty}[ (\theta e^{\theta})_a^{0} -\int_a^{0} e^{\theta} d\theta$ This implies that $\lim\limits_{a \to -\infty}[ (\theta e^{\theta})_a^{0} -\int_a^{0} e^{\theta} d\theta=\lim\limits_{a \to -\infty}[ e^{\theta}(\theta-1)]_a^{0}$ or, $\lim\limits_{a \to -\infty}[ e^{\theta}(\theta-1)]_a^{0}=-1-\lim\limits_{a \to -\infty}[ e^{a}(1-a)]$ But $\lim\limits_{a \to -\infty}[ e^{\theta}(\theta-1)]_a^{0}=0(-\infty)$ This shows an indeterminate form of a limit, so we will use L-Hospital's rule. $\lim\limits_{a \to -\infty}\dfrac{-1}{-e^{-a}}=0$ Thus, $-1-\lim\limits_{a \to -\infty}[ e^{a}(1-a)]=-1-0=-1$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.