University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.5 - Integral Tables and Computer Algebra Systems - Exercises - Page 451: 40

Answer

$$\int x^2\sqrt{2x-x^2}dx=\frac{5}{8}\sin^{-1}(x-1)-\frac{x-1}{8}\sqrt{1-(x-1)^2}[1-2(x-1)^2]-\frac{2[1-(x-1)^2]^{3/2}}{3}+\frac{x-1}{2}\sqrt{1-(x-1)^2}+C$$

Work Step by Step

$$A=\int x^2\sqrt{2x-x^2}dx$$ $$A=\int x^2\sqrt{-(x^2-2x)}dx$$ $$A=\int x^2\sqrt{-[(x^2-2x+1)-1]}dx$$ $$A=\int x^2\sqrt{1-(x-1)^2}dx$$ We set $u=x-1$, which means $$du=dx$$ Also, $x^2=(u+1)^2=u^2+2u+1$ Therefore, $$A=\int(u^2+2u+1)\sqrt{1-u^2}du$$ $$A=\int u^2\sqrt{1-u^2}du+2\int u\sqrt{1-u^2}du+\int\sqrt{1-u^2}du$$ The first integral, we use Formula 46, which states that $$\int x^2\sqrt{a^2-x^2}dx=\frac{a^4}{8}\sin^{-1}\frac{x}{a}-\frac{1}{8}x\sqrt{a^2-x^2}(a^2-2x^2)+C$$ for $a=1$ The second integral, take $a= 1-u^2$, so that $-2udu=da$, therefore, $udu=-\frac{1}{2}da$ The final integral, use Formula 45, which states that $$\int\sqrt{a^2-x^2}dx=\frac{x}{2}\sqrt{a^2-x^2}+\frac{a^2}{2}\sin^{-1}\frac{x}{a}+C$$ for $a=1$ $$A=\frac{1}{8}\sin^{-1}u-\frac{u}{8}\sqrt{1-u^2}(1-2u^2)+2\int\sqrt{a}(-1/2da)+\frac{u}{2}\sqrt{1-u^2}+\frac{1}{2}\sin^{-1}u+C$$ $$A=\frac{5}{8}\sin^{-1}u-\frac{u}{8}\sqrt{1-u^2}(1-2u^2)-\int a^{1/2}da+\frac{u}{2}\sqrt{1-u^2}+C$$ $$A=\frac{5}{8}\sin^{-1}u-\frac{u}{8}\sqrt{1-u^2}(1-2u^2)-\frac{2a^{3/2}}{3}+\frac{u}{2}\sqrt{1-u^2}+C$$ $$A=\frac{5}{8}\sin^{-1}(x-1)-\frac{x-1}{8}\sqrt{1-(x-1)^2}[1-2(x-1)^2]-\frac{2[1-(x-1)^2]^{3/2}}{3}+\frac{x-1}{2}\sqrt{1-(x-1)^2}+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.