University Calculus: Early Transcendentals (3rd Edition)

Published by Pearson
ISBN 10: 0321999584
ISBN 13: 978-0-32199-958-0

Chapter 8 - Section 8.5 - Integral Tables and Computer Algebra Systems - Exercises - Page 451: 25



Work Step by Step

$$A=\int\cos\frac{\theta}{3}\cos\frac{\theta}{4}d\theta$$ Use Formula 69c, which states that $$\int \cos ax\cos bx dx=\frac{\sin(a-b)x}{2(a-b)}+\frac{\sin(a+b)x}{2(a+b)}+C$$ for $a=1/3$ and $b=1/4$: $a-b=1/3-1/4=1/12$ while $a+b=1/3+1/4=7/12$ $$A=\frac{\sin\frac{1}{12}\theta}{2\times\frac{1}{12}}+\frac{\sin\frac{7}{12}\theta}{2\times\frac{7}{12}}+C$$ $$A=\frac{\sin\frac{\theta}{12}}{\frac{1}{6}}+\frac{\sin\frac{7\theta}{12}}{\frac{7}{6}}+C$$ $$A=6\sin\frac{\theta}{12}+\frac{6}{7}\sin\frac{7\theta}{12}+C$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.