Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 462: 29

Answer

$-\frac{18}{35}-\frac{2}{7}\left(\frac{3}{2}\right)^{7 / 2}+\frac{4}{5}\left(\frac{3}{2}\right)^{5 / 2} \approx0.509$

Work Step by Step

$$ \begin{aligned} & \int_{5 \pi / 6}^{\pi} \frac{\cos ^{4} x}{\sqrt{1-\operatorname{sin} x}} d x \\ \\ & \text {First we will do the undefined integral}\\ \\ & \int \frac{\cos ^{4} x}{\sqrt{1-\operatorname{sin} x}} d x \\ & \int \frac{\cos ^{4} x \cdot \sqrt{1+\operatorname{sin} x}}{\sqrt{(1-\operatorname{sen} x)(1+\operatorname{sin} x)}} d x \\ & \int \frac{\cos ^{4} x \sqrt{1+\operatorname{sin} x}}{\sqrt{1-\operatorname{sin}^{2} x} d x} \\ & \cos ^{2} x+\operatorname{sin}^{2} x=1 \\ & \cos ^{2} x=1-\operatorname{sin}^{2} x \\ & \int \frac{\cos ^{4} x \sqrt{1+\operatorname{sin} x}}{\sqrt{\cos ^{2} x}} d x \rightarrow \int \frac{\cos ^{4} x \sqrt{1+\operatorname{sin} x}}{\cos x} d x \\ & \int \cos ^{3} x \sqrt{1+\operatorname{sin} x} d x \rightarrow \int \cos ^{2} x \cdot \cos x \cdot \sqrt{1+\operatorname{sin} x} d x \\ & \int\left(1-\operatorname{sin}^{2} x\right) \cos x \sqrt{1+\operatorname{sin} x} d x \\ & u=\operatorname{sin} x \quad d u=\cos x d x \quad d x=\frac{d u}{\cos x} \\ & \int\left(1-u^{2}\right) \sqrt{1+u} \cos x \frac{d u}{\cos x} \\ & \int\left(1-u^{2}\right) \sqrt{1+u} d u \\ & \int(u-1)(u+1) \sqrt{1+u} d u \\ & \int(u-1)(u+1)^{3 / 2} d u \\ & \begin{array}{l} z=u+1 \quad d z=d u \quad u=z-1 \\ \int(z-2)(z)^{3 / 2} d z \rightarrow \int z^{5 / 2}-2 z^{3 / 2} d z \end{array} \\ & \frac{2}{7} z^{7 / 2}-2\left(\frac{2}{5}\right) z^{5 / 2}+C \\ & \frac{2}{7}(u+1)^{7 / 2}-\frac{4}{5}(u+1)^{5 / 2}+C \\ & \frac{2}{7}(\operatorname{sin} x+1)^{7 / 2}-\frac{4}{5}(\operatorname{sin} x+1)^{5 / 2}+C \end{aligned} $$ $$ \begin{aligned} & \int \frac{\cos ^{4} x}{\sqrt{1-\operatorname{sin} x}} d x=\frac{2}{7}(\operatorname{sin} x+1)^{7 / 2}-\frac{4}{5}(\operatorname{sin} x+1)^{5 / 2}+C \\ \\ & \text {Now we will evaluate the integral limits to find the answer}\\ \\ & \int_{\frac{5 \pi}{6}}^{\pi} \frac{\cos ^{4} x}{\sqrt{1-\operatorname{sin} x}} d x=\left[\frac{2}{7}(\operatorname{sin} x+1)^{7 / 2}-\frac{4}{5}(\operatorname{sin} x+1)^{5 / 2}\right]_{5 \pi / 6}^{\pi} \\ & =\left(\frac{2}{7}(\operatorname{sin} \pi+1)^{7 / 2}-\frac{4}{5}(\operatorname{sin} \pi+1)^{5 / 2}\right)-\left(\frac{2}{7}\left(\operatorname{sin} \frac{5 \pi}{6}+1\right)^{7 / 2}-\frac{4}{5}\left(\operatorname{sin} \frac{5 \pi}{6}+1\right)^{5 / 2}\right) \\ & =-\frac{18}{35}-\frac{2}{7}\left(\frac{3}{2}\right)^{7 / 2}+\frac{4}{5}\left(\frac{3}{2}\right)^{5 / 2} \\ & \approx0.509 \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.