Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 462: 25

Answer

$$\int_{0}^{\pi} \sqrt{1-\sin ^{2} t} d t =2$$

Work Step by Step

Given $$\int_{0}^{\pi} \sqrt{1-\sin ^{2} t} d t $$ So, we have \begin{aligned} I&=\int_{0}^{\pi} \sqrt{1-\sin ^{2} t} d t\\ &\text{since} \ \ \cos^2 t= 1- \sin^2 t ,\text{ we get}\\ &=\int_{0}^{\pi}|\cos t| d t\\ &\text { since} \ \cos t \geq 0 \text { for } t \in[0, \pi / 2] \text { and } \cos t \leq 0 \text { for } t \in[\pi / 2, \pi] \text {, we can separate the integral as } \\ I&=\int_{0}^{\pi / 2} \cos t d t+\int_{\pi / 2}^{\pi} (-\cos t) d t\\ &=[\sin t]_{0}^{\pi / 2}-[\sin t]_{\pi / 2}^{\pi}\\ &=\sin \pi/2-\sin0-\sin \pi +\sin\pi/2\\ &=1-0-0+1\\ &=2\\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.