Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 8: Techniques of Integration - Section 8.3 - Trigonometric Integrals - Exercises 8.3 - Page 462: 26


$$\int_{0}^{\pi} \sqrt{1-\cos ^{2} \theta} \mathrm{d} \theta=2 $$

Work Step by Step

Given $$\int_{0}^{\pi} \sqrt{1-\cos ^{2} \theta} \mathrm{d} \theta $$ So, we have \begin{aligned} I&=\int_{0}^{\pi} \sqrt{1-\cos ^{2} \theta} \ d\theta\\ &=\int_{0}^{\pi}|\sin \theta| \ d \theta\\ &=\int_{0}^{\pi} \sin \theta \ d \theta\\ &=[-\cos \theta]_{0}^{\pi}\\ &=-\cos \pi+\cos0\\ &=1+1\\ &=2\\ \end{aligned}
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.