#### Answer

$y'=\frac{-1}{2x^2}(\frac{x^2+x}{x^2})^{-1/2}$

#### Work Step by Step

Rewrite the equation: $y=(\frac{x^2+x}{x^2})^{1/2}$
Take the derivative of the equation using Power Rule, Chain Rule, and Quotient Rule:
$y'=\frac{1}{2}(\frac{x^2+x}{x^2})^{-1/2}\times\frac{(x^2)(2x+1)-(x^2+x)(2x)}{(x^2)^2}$
$=\frac{1}{2}(\frac{x^2+x}{x^2})^{-1/2}\times\frac{2x^3+x^2-2x^3-2x^2}{x^4}$
$=\frac{1}{2}(\frac{x^2+x}{x^2})^{-1/2}\times\frac{-x^2}{x^4}$
$=\frac{-1}{2x^2}(\frac{x^2+x}{x^2})^{-1/2}$