Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 2: Limits and Continuity - Section 2.4 - One-Sided Limits - Exercises 2.4 - Page 75: 28

Answer

3

Work Step by Step

We know $$\lim\limits_{\theta \to 0} \dfrac{\mathrm{sin}\left(\theta \right)}{\theta }=1.$$ Thus for any nonzero real number $a$, it follows that $$\underset{\theta \to 0}{\lim}\dfrac{\mathrm{sin}\left(a\theta \right)}{a\theta }=1.$$ We will use this fact to compute the limit below. So to see that this is true, we let $x=a\theta.$ Then since $x \to 0$ as $\theta \to 0$, we have $$\underset{\theta \to 0}{\lim}\dfrac{\mathrm{sin}\left(a\theta \right)}{a\theta }=\underset{x\to 0}{\lim}\dfrac{\mathrm{sin}\left(x\right)}{x}=1.$$ Now, we want to find $$\underset{x\to 0}{\lim}[6x^{2}\mathrm{cot}\left(x\right)\mathrm{csc}\left(2x\right)].$$ Note that $$6{x}^{2}\mathrm{cot}\left(x\right)\mathrm{csc}\left(2x\right)=6{x}^{2}\left(\frac{\mathrm{cos}\left(x\right)}{\mathrm{sin}\left(x\right)}\right)\left(\frac{1}{\mathrm{sin}\left(2x\right)}\right)=2\left(3\right){x}^{2}\left(\frac{1}{\mathrm{sin}\left(x\right)}\right)\left(\frac{1}{\mathrm{sin}\left(2x\right)}\right)\left(\mathrm{cos}\left(x\right)\right)=\left(\frac{x}{\mathrm{sin}\left(x\right)}\right)\left(\frac{2x}{\mathrm{sin}\left(2x\right)}\right)\left(3\mathrm{cos}\left(x\right)\right).$$ Thus $$\underset{x\to 0}{\lim}[6{x}^{2}\mathrm{cot}\left(x\right)\mathrm{csc}\left(2x\right)]=\underset{x\to 0}{\lim}\left[\left(\frac{x}{\mathrm{sin}\left(x\right)}\right)\left(\frac{2x}{\mathrm{sin}\left(2x\right)}\right)\left(3\mathrm{cos}\left(x\right)\right)\right]\\=\left(1\right)\left(1\right)\left(3\right)=3.$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.