Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Chapter 10: Infinite Sequences and Series - Section 10.6 - Alternating Series and Conditional Convergence - Exercises 10.6 - Page 603: 10



Work Step by Step

Let us consider $u_n=\dfrac{1}{\ln n}$ and $u_n$ refers to the all positive values of $n$. The given function implies that $\ln n$ is an increasing function, but the sequence $u_n$ is decreasing. Then, $\lim\limits_{n \to \infty} a_n=\lim\limits_{n \to \infty} \dfrac{1}{\ln n}=0$ Hence, the series converges by the Alternating Series Test.
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.