Thomas' Calculus 13th Edition

Published by Pearson
ISBN 10: 0-32187-896-5
ISBN 13: 978-0-32187-896-0

Appendices - Section A.1 - Real Numbers and the Real Line - Exercises A.1 - Page AP-6: 14

Answer

$\displaystyle \frac{2}{7}\lt x\lt \frac{2}{5},\qquad$ or, $x\displaystyle \in(\frac{2}{7},\frac{2}{5})$

Work Step by Step

Use properties from the table 'Absolute Values and Intervals". Applying Property 6: $|x|\lt a\quad\Leftrightarrow\quad -a\lt x\lt a, \quad $ for a = positive number We have: $|3-\displaystyle \frac{1}{x}|\lt \frac{1}{2}\quad\Leftrightarrow\quad -\frac{1}{2}\lt 3-\frac{1}{x}\lt \frac{1}{2}$ Applying rule 1 for inequalities, add $-3$ to each part of the compound inequality $-3-\displaystyle \frac{1}{2}\lt -\frac{1}{x}\lt -3+\frac{1}{2}$ $-\displaystyle \frac{7}{2}\lt -\frac{1}{x}\lt -\frac{5}{2}$ Apply rule 4: multiply with a negative number, $(-1)$ $\displaystyle \frac{7}{2}\gt \frac{1}{x}\gt \frac{5}{2}$ Apply rule 6 (reciprocals cause a change of inequality direction) $\displaystyle \frac{2}{7}\lt x\lt \frac{2}{5}$ This is an open interval, $(\displaystyle \frac{2}{7},\frac{2}{5})$ (see table: "Types of intervals".)
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.