Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Review - Review Exercises - Page 856: 39

Answer

$\dfrac{dy}{dx}=\dfrac{(2x+1)^4(3x+4)}{(x+1)(3x-1)^3}[\dfrac{8}{2x+1}+\dfrac{3}{3x+4}-\dfrac{1}{x+1}-\dfrac{9}{3x-1}]$

Work Step by Step

We have: $y=\dfrac{(2x+1)^4(3x+4)}{(x+1)(3x-1)^3}$ or, $\ln y=\ln [\dfrac{(2x+1)^4(3x+4)}{(x+1)(3x-1)^3}]$ We differentiate both sides with respect to $x$. $\dfrac{1}{y}\dfrac{dy}{dx}=\dfrac{8}{2x+1}+\dfrac{3}{3x+4}-\dfrac{1}{x+1}-\dfrac{9}{3x-1}$ This implies that $\dfrac{dy}{dx}=y[\dfrac{8}{2x+1}+\dfrac{3}{3x+4}-\dfrac{1}{x+1}-\dfrac{9}{3x-1}]$ Therefore, $\dfrac{dy}{dx}=\dfrac{(2x+1)^4(3x+4)}{(x+1)(3x-1)^3}[\dfrac{8}{2x+1}+\dfrac{3}{3x+4}-\dfrac{1}{x+1}-\dfrac{9}{3x-1}]$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.