Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Review - Review Exercises - Page 856: 37

Answer

$$\frac{{dy}}{{dx}} = - \frac{y}{x}$$

Work Step by Step

$$\eqalign{ & {e^{xy}} + xy = 1 \cr & {\text{Differentiate each sides w}}{\text{.r}}{\text{.t}} \hspace{2mm} x \cr & \frac{d}{{dx}}\left[ {{e^{xy}}} \right] + \frac{d}{{dx}}\left[ {xy} \right] = \frac{d}{{dx}}\left[ 1 \right] \cr & {\text{Apply }}\frac{d}{{dx}}\left[ {{e^u}} \right] = {e^u}\frac{{du}}{{dx}}{\text{ }} \cr & {e^{xy}}\underbrace {\frac{d}{{dx}}\left[ {xy} \right]}_{{\text{Product rule}}} + \underbrace {\frac{d}{{dx}}\left[ {xy} \right]}_{{\text{Product rule}}} = \frac{d}{{dx}}\left[ 1 \right] \cr & {e^{xy}}\left( {x\frac{{dy}}{{dx}} + y} \right) + x\frac{{dy}}{{dx}} + y = 0 \cr & {\text{Solving for }}\frac{{dy}}{{dx}} \cr & x{e^{xy}}\frac{{dy}}{{dx}} + y{e^{xy}} + x\frac{{dy}}{{dx}} + y = 0 \cr & x{e^{xy}}\frac{{dy}}{{dx}} + x\frac{{dy}}{{dx}} = - y{e^{xy}} - y \cr & \left( {x{e^{xy}} + x} \right)\frac{{dy}}{{dx}} = - y{e^{xy}} - y \cr & \frac{{dy}}{{dx}} = \frac{{ - y{e^{xy}} - y}}{{x{e^{xy}} + x}} \cr & {\text{Factor and simplify}} \cr & \frac{{dy}}{{dx}} = \frac{{ - y\left( {{e^{xy}} + 1} \right)}}{{x\left( {{e^{xy}} + 1} \right)}} \cr & \frac{{dy}}{{dx}} = - \frac{y}{x} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.