Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Review - Review Exercises - Page 856: 34

Answer

$$x = \frac{1}{3}$$

Work Step by Step

$$\eqalign{ & y = \sqrt x \left( {x - 1} \right) \cr & {\text{Differentiate both sides with respect to }}x \cr & \frac{{dy}}{{dx}} = \frac{d}{{dx}}\left[ {\sqrt x \left( {x - 1} \right)} \right] \cr & {\text{Using the product rule}} \cr & \frac{{dy}}{{dx}} = \sqrt x \frac{d}{{dx}}\left[ {x - 1} \right] + \left( {x - 1} \right)\frac{d}{{dx}}\left[ {\sqrt x } \right] \cr & \frac{{dy}}{{dx}} = \sqrt x + \left( {x - 1} \right)\left( {\frac{1}{{2\sqrt x }}} \right) \cr & {\text{The tangent line to the graph is horizontal when }}\frac{{dy}}{{dx}} = 0,{\text{ then}} \cr & \sqrt x + \left( {x - 1} \right)\left( {\frac{1}{{2\sqrt x }}} \right) = 0 \cr & {\text{Solve for }}x \cr & \sqrt x + \frac{x}{{2\sqrt x }} - \frac{1}{{2\sqrt x }} = 0 \cr & \sqrt x + \frac{1}{2}\sqrt x - \frac{1}{{2\sqrt x }} = 0 \cr & \frac{3}{2}\sqrt x - \frac{1}{{2\sqrt x }} = 0 \cr & \frac{3}{2}\sqrt x = \frac{1}{{2\sqrt x }} \cr & \frac{2}{3}\sqrt x \left( {\frac{3}{2}\sqrt x } \right) = \frac{2}{3}\sqrt x \left( {\frac{1}{{2\sqrt x }}} \right) \cr & x = \frac{1}{3} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.