Finite Math and Applied Calculus (6th Edition)

Published by Brooks Cole
ISBN 10: 1133607705
ISBN 13: 978-1-13360-770-0

Chapter 11 - Review - Review Exercises - Page 856: 20

Answer

$$f'\left( x \right) = \frac{{12{{\left( {x - 1} \right)}^2}}}{{{{\left( {3x + 1} \right)}^4}}}$$

Work Step by Step

$$\eqalign{ & f\left( x \right) = {\left[ {\frac{{x - 1}}{{3x + 1}}} \right]^3} \cr & {\text{Differentiate both sides with respect to }}x \cr & f'\left( x \right) = \frac{d}{{dx}}\left[ {{{\left( {\frac{{x - 1}}{{3x + 1}}} \right)}^3}} \right] \cr & {\text{Apply the chain rule and the powe rule }}\frac{d}{{dx}}\left[ {{u^n}} \right] = n{u^{n - 1}}u' \cr & {\text{For this exercise, }}u = \frac{{x - 1}}{{3x + 1}}{\text{ and }}n = 3,{\text{ then}} \cr & f'\left( x \right) = 3{\left( {\frac{{x - 1}}{{3x + 1}}} \right)^{3 - 1}}\underbrace {\frac{d}{{dx}}\left[ {\frac{{x - 1}}{{3x + 1}}} \right]}_{{\text{Use quotient rule}}} \cr & f'\left( x \right) = 3{\left( {\frac{{x - 1}}{{3x + 1}}} \right)^2}\left[ {\frac{{\left( {3x + 1} \right)\frac{d}{{dx}}\left[ {x - 1} \right] - \left( {x - 1} \right)\frac{d}{{dx}}\left[ {3x + 1} \right]}}{{{{\left( {3x + 1} \right)}^2}}}} \right] \cr & {\text{Computing derivatives}} \cr & f'\left( x \right) = 3{\left( {\frac{{x - 1}}{{3x + 1}}} \right)^2}\left[ {\frac{{\left( {3x + 1} \right)\left( 1 \right) - \left( {x - 1} \right)\left( 3 \right)}}{{{{\left( {3x + 1} \right)}^2}}}} \right] \cr & {\text{Simplifying}} \cr & f'\left( x \right) = 3{\left( {\frac{{x - 1}}{{3x + 1}}} \right)^2}\left[ {\frac{{3x + 1 - 3x + 3}}{{{{\left( {3x + 1} \right)}^2}}}} \right] \cr & f'\left( x \right) = 3{\left( {\frac{{x - 1}}{{3x + 1}}} \right)^2}\left[ {\frac{4}{{{{\left( {3x + 1} \right)}^2}}}} \right] \cr & f'\left( x \right) = \frac{{12{{\left( {x - 1} \right)}^2}}}{{{{\left( {3x + 1} \right)}^4}}} \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.