#### Answer

a. 13766.78;
b. 30638.52.

#### Work Step by Step

a. $P=\int ^{10}_{0} 2000e^{-0.08t}=2000\frac{e^{-0.08t}}{-0.08}|^{10}_{0}=-25000(e^{-0.8}-1) \approx 13766.78 $
b. $A=e^{(0.08)10}\int^{10}_{0}2000e^{-0.08t}dt = e^{0.8}.2000\int^{10}_{0}e^{-0.08t}dt=e^{0.8}.2000.\frac{1}{-0.08}(e^{-0.08t}|^{10}_{0}) \approx 30638.52$