Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 8 - Further Techniques and Applications of Integration - 8.1 Integration by Parts - 8.1 Exercises - Page 433: 20

Answer

$$\frac{1}{6}\ln 3$$

Work Step by Step

$$\eqalign{ & \int_0^1 {\frac{{{x^2}dx}}{{2{x^3} + 1}}} \cr & {\text{use substitution}}{\text{. Let }}u = 2{x^3} + 1,{\text{ so that }}\frac{{du}}{{dx}} = 6{x^2},\,\,\,\,\,{x^2}dx = \frac{1}{6}du \cr & {\text{the new limits on }}t{\text{ are found as follows}} \cr & \,\,\,\,\,\,{\text{If }}x = 1,{\text{ then }}u = 2{\left( 1 \right)^3} + 1 = 3 \cr & \,\,\,\,\,\,{\text{If }}x = 0,{\text{ then }}u = 2{\left( 0 \right)^3} + 1 = 1 \cr & {\text{Then}} \cr & \int_0^1 {\frac{{{x^2}dx}}{{2{x^3} + 1}}} = \int_1^3 {\frac{{\left( {1/6} \right)du}}{u}} \cr & = \frac{1}{6}\int_1^3 {\frac{{du}}{u}} \cr & {\text{integrate}} \cr & = \frac{1}{6}\left( {\ln \left| u \right|} \right)_1^3 \cr & {\text{evaluating}} \cr & = \frac{1}{6}\left( {\ln \left| 3 \right| - \ln \left| 1 \right|} \right) \cr & = \frac{1}{6}\ln 3 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.