Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 6 - Applications of the Derivative - 6.4 Implicit Differentiation - 6.4 Exercises - Page 335: 40

Answer

$$ e^{u^{2}-v}-v=1; $$ (a) $$ \begin{aligned} \frac{d u}{d v} &=\frac{1+e^{u^{2}-v}}{2 u e^{u^{2}-v}} . \end{aligned} $$ (b) $$ \begin{aligned} \frac{d v}{d u} &=\frac{2u e^{u^{2}-v}}{e^{u^{2}-v}+1}. \end{aligned} $$

Work Step by Step

$$ e^{u^{2}-v}-v=1; $$ (a) $\frac{d u}{d v}$ Now, we can calculate $\frac{d u}{d v}$ by implicit differentiation, $$ \begin{aligned} \frac{d}{d v}\left(e^{u^{2}-v}-v\right) &=\frac{d}{d v}(1) \\ \frac{d}{d v}\left(e^{u^{2}-v}\right)-\frac{d}{d v} v &=\frac{d}{d v}(1) \\ e^{u^{2}-v} \frac{d}{d v}\left(u^{2}-v\right)-1 &=0 \\ e^{u^{2}-v}\left(2 u^{2}-v\right)-1 &=0 \\ 2 u \frac{d u}{d v}-1 &=1 \\ \frac{d u}{d v} &=\frac{1}{2 u}\left(\frac{1}{e^{u^{2}-v}}+1\right) \\ \frac{d u}{d v} &=\frac{1+e^{u^{2}-v}}{2 u e^{u^{2}-v}} . \end{aligned} $$ $$ e^{u^{2}-v}-v=1; $$ (b) $\frac{d v}{d u}$ $$ \begin{aligned} \frac{d}{d u}\left(e^{u^{2}-v}-v\right) &=\frac{d}{d u}(1) \\ \frac{d}{d u}\left(e^{u^{2}-v}\right)-\frac{d}{d u} v &=\frac{d}{d u}(1) \\ e^{u^{2}-v} \frac{d}{d u}\left(u^{2}-v\right)-\frac{d v}{d u} &=0 \\ e^{u^{2}-v}\left(2 u-\frac{d v}{d u}\right)-\frac{d v}{d u} &=0 \\ e^{u^{2}-v} \frac{d v}{d u}-\frac{d v}{d u} &=-2 u e^{u^{2}-v} \\-\frac{d v}{d u}\left(e^{u^{2}-v}+1\right) &=-2 u e^{u^{2}-v} \\ \frac{d v}{d u} &=\frac{2u e^{u^{2}-v}}{e^{u^{2}-v}+1}. \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.