Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 6 - Applications of the Derivative - 6.4 Implicit Differentiation - 6.4 Exercises - Page 335: 35

Answer

$$ y^{2}(x^{2}+y^{2})=20x^{2}; \quad\quad (1,2) $$ The equation of the tangent line at the point $(1,2)$ is: $$ y =\frac{8}{9}x+\frac{10}{9} $$

Work Step by Step

$$ y^{2}(x^{2}+y^{2})=20x^{2}; \quad\quad (1,2) $$ Now, we can calculate $\frac{dy}{dx}$ by implicit differentiation, use the product rule and the chain rule as follows: $$ \begin{aligned} 2 y\left(x^{2}+y^{2}\right) \frac{d y}{d x}+y^{2}\left(2 x+2 y \frac{d y}{d x}\right) &=40 x \\ 2 x^{2} y \frac{d y}{d x}+2 y^{3} \frac{d y}{d x}+2 x y^{2}+2 y^{3} \frac{d y}{d x} &=40 x \\ 2 x^{2} y \frac{d y}{d x}+4 y^{3} \frac{d y}{d x} &=-2 x y^{2}+40 x \\ \left(2 x^{2} y+4 y^{3}\right)\left(\frac{d y}{d x}\right) &=-2 x y^{2}+40 x \\ \frac{d y}{d x} &=\frac{-2 x y^{2}+40 x}{2 x^{2} y+4 y^{3}} \end{aligned} $$ To find the slope of the tangent line at the point $(1,2)$, let $x=1$ and $y=2.$ The slope is $$ \begin{aligned} \frac{d y}{d x} &=\frac{-2 (1) (2)^{2}+40(1)}{2 (1)^{2} (2)+4 (2)^{3}} \\ &=\frac{32}{36}\\ &=\frac{8}{9}\\ \end{aligned} $$ The equation of the tangent line is then found by using the point-slope form of the equation of a line. $$ \begin{aligned} (y-y_{1}) &=m(x-x_{1})\\ (y-(2)) &=(\frac{8}{9} )(x-(1))\\ 9(y-2) &=8(x-1)\\ 9y &=8x-8+18\\ y &=8x+10\\ y &=\frac{8}{9}x+\frac{10}{9}\\ \end{aligned} $$ Therefore, the equation of the tangent line at the point $(1,2)$ is: $$ y =\frac{8}{9}x+\frac{10}{9} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.