Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 6 - Applications of the Derivative - 6.4 Implicit Differentiation - 6.4 Exercises - Page 335: 39

Answer

$$ \sqrt {u}+\sqrt {2v+1}=5; $$ (a) $$ \begin{aligned} \frac{d u}{d v} &=-\frac{2 u^{1 / 2}}{(2 v+1)^{1 / 2}} . \end{aligned} $$ (b) $$ \begin{aligned} \frac{d v}{d u} &=-\frac{(2 v+1)^{1 / 2}}{2 u^{1 / 2}} . \end{aligned} $$

Work Step by Step

$$ \sqrt {u}+\sqrt {2v+1}=5; $$ (a) $\frac{d u}{d v}$ Now, we can calculate $\frac{d u}{d v}$ by implicit differentiation, $$ \begin{aligned} \frac{d }{d v}(\sqrt{u}+\sqrt{2 v+1}) &=\frac{d }{d v}(5) \\ \frac{1}{2} u^{-1 / 2} \frac{d u}{d v}+\frac{1}{2}(2 v+1)^{-1 / 2}(2) &=0 \\ \frac{1}{2} u^{-1 / 2} \frac{d u}{d v} &=-\frac{1}{(2 v+1)^{1 / 2}} \\ \frac{d u}{d v} &=-\frac{2 u^{1 / 2}}{(2 v+1)^{1 / 2}} . \end{aligned} $$ $$ \sqrt {u}+\sqrt {2v+1}=5; $$ (b) $\frac{d v}{d u}$ $$ \begin{aligned} \frac{d }{d u}(\sqrt{u}+\sqrt{2 v+1}) &=\frac{d }{d u}(5) \\ \frac{1}{2} u^{-1 / 2}+\frac{1}{2}(2 v+1)^{-1 / 2}(2) \frac{d v}{d u} &=0 \\(2 v+1)^{-1 / 2} \frac{d v}{d u} &=-\frac{1}{2} u^{-1 / 2} \\ \frac{d v}{d u} &=-\frac{(2 v+1)^{1 / 2}}{2 u^{1 / 2}} . \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.