Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.4 Curve Sketching - 5.4 Exercises - Page 295: 6

Answer

$$ f(x)=x^{3} - 6 x^{2} + 12 x- 11 $$ Domain is $(-\infty, \infty)$ $$ \begin{aligned} f(-x) \ne f(x) \end{aligned} $$ No symmetry The only critical number is: $x =2$. Critical point: $$ (2, -3) . $$ The function $f$ is increasing on interval $ ( -\infty , \infty) . $ No relative extremum at $ (2, -3) . $ $(2 , -3)$ is inflection point. $f(x)$ is concave downward on $(-\infty, 2 )$. $f(x)$ is concave upward on $(2, \infty )$. y-intercept: $$ f(0)=-11 $$

Work Step by Step

$$ f(x)=x^{3} - 6 x^{2} + 12 x- 11 $$ Domain is $(-\infty, \infty)$ $$ \begin{aligned} f(-x) &=(-x)^{3}-6(-x)^{2}+12(-x)-11 \\ &=-x^{3}-6 x^{2}-12 x-11 \\ & \ne f(x) \end{aligned} $$ No symmetry To find the intervals where the function is increasing and decreasing. First, we find $f^{\prime}(x) $, $$ \begin{aligned} f^{\prime}(x) & =3 x^{2}-12 x+12 \\ &=3\left(x^{2}-4 x+4\right)\\ &=3(x-2)^{2} \end{aligned} $$ To find the critical numbers, we first find any values of $x$ that make $f^{\prime} =0 $. Now, solve the equation $f^{\prime} =0 $ to get $$ \begin{aligned} f^{\prime}(x) & =3(x-2)^{2}=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ & x-2=0 \\ \Rightarrow\quad\quad\quad\quad\quad\\ &x=2 \\ \end{aligned} $$ So, the only critical number is: $x =2$. To find the critical points substituting in $f$ as follows: $$ f(2)=(2)^{3} - 6 (2)^{2} + 12 (2)- 11=-3 $$ So, Critical point: $$ (2, -3) . $$ We can still apply the first derivative test, however, to find where $f$ is increasing and decreasing. Now, check the sign of $f^{\prime}(x)$. in the intervals $$ (-\infty,2 ), \quad\quad (2 , \infty ). $$ (1) Test a number in the interval $(-\infty, 2 )$ say $0$: $$ \begin{aligned} f^{\prime}(0) &=3((0)-2)^{2} \\ &=12 \\ &\gt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(-\infty, 2 )$. (2) Test a number in the interval $(2, \infty )$ say $3$: $$ \begin{aligned} f^{\prime}(3) &=3((3)-2)^{2} \\ &=3 \\ &\gt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(2, \infty )$. So, the function $f$ is increasing on interval $ ( -\infty , \infty) . $ No relative extremum at $ (2, -3) . $ Now, the second derivative is $$ \begin{aligned} f^{\prime \prime}(x) &=6 x-12 \\ &=6( x-2) \\ \end{aligned} $$ Set $f^{\prime\prime}(x)$ equal to $0$ and solve for $x$. $$ \begin{aligned} f^{\prime \prime}(x) &=6( x-2)=0 \\ \Rightarrow\quad\quad\quad\quad\quad\\ & x-2 =0 \\ \Rightarrow\quad\quad\quad\quad\quad\\ x &=2 \end{aligned} $$ so $(2 , -3)$ is inflection point. * $$ \begin{array}{l} f^{\prime \prime}(0)=-6( (0)-2)=-12\lt 0 \\ f^{\prime \prime}(3)=6( (3)-2)=6\gt 0 \end{array} $$ Test a number in the interval $(-\infty, 2 )$ to see that $f^{\prime\prime}(x)$ is negative in that interval, so $f(x)$ is concave downward on $(-\infty, 2 )$. ** Test a number in the interval $(2, \infty )$to find $f^{\prime\prime}(x)$ positive in that interval, so $f(x)$ is concave upward on $(2, \infty )$. y-intercept: $$ f(0)=(0)^{3} - 6 (0)^{2} + 12 (0)- 11=-11 $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.