Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.4 Curve Sketching - 5.4 Exercises - Page 295: 12

Answer

$$ f(x)=16x+\frac{1}{x^{2}}=16x+x^{-2} $$ The domain is $$(-\infty, 0) \cup(0, \infty)$$ The graph is not symmetric about the y-axis or the origin. the critical numbers are: $x =\frac{1}{2} $ . Critical point: $$ (\frac{1}{2} , 12) . $$ $f^{\prime}(x) $ does not exist at $x=0$ So, the function $f$ Increasing on $$ (-\infty, 0) \quad \text{and} \quad( \frac{1}{2} ,\infty) $$ Decreasing on $$(0, \frac{1}{2} ).$$ and we find that: relative minimum at $ \frac{1}{2},$ There are no inflection points. $f(x)$ is concave upward on $(-\infty, 0)$ and $(0, \infty )$ . there are no x-intercepts. there is no y-intercept. Vertical asymptotic at $x=0$ $$ \lim\limits_{x \to 0}f(x)=\infty. $$

Work Step by Step

$$ f(x)=16x+\frac{1}{x^{2}}=16x+x^{-2} $$ since $f(x)$ does not exist when $x=0,$ the domain is $$(-\infty, 0) \cup(0, \infty)$$ $$ \begin{aligned} f(-x) &=16(-x)+\frac{1}{(-x)^{2}}\\ &=-16x+x^{-2}\\ \end{aligned} $$ The graph is not symmetric about the y-axis or the origin. To find the intervals where the function is increasing and decreasing. First, we find $f^{\prime}(x) $, $$ \begin{aligned} f^{\prime}(x)&= 16 -2 x^{-3}\\ &=16-\frac{2}{x^{3}} \\ &=\frac{2\left(8 x^{3}-1\right)}{x^{3}} \end{aligned} $$ To find the critical numbers, we first find any values of $x$ that make $f^{\prime} =0 $. Now, solve the equation $f^{\prime} =0 $ to get $$ \begin{aligned} f^{\prime}(x) & =\frac{2\left(8 x^{3}-1\right)}{x^{3}} =0 \\ \Rightarrow \quad\quad\quad\quad\\ \left(8 x^{3}-1\right)\\ \Rightarrow \quad\quad\quad\quad\\ x=\frac{1}{2} \end{aligned} $$ So, the critical numbers are: $x =\frac{1}{2} $ . To find the critical points substituting in $f$ as follows: $$ f(\frac{1}{2})=16(\frac{1}{2})+\frac{1}{(\frac{1}{2})^{2}}=12 $$ So, Critical point: $$ (\frac{1}{2} , 12) . $$ $f^{\prime}(x) $ does not exist at $x=0$ Now, we can use the first derivative test. Check the sign of $f^{\prime}(x)$. in the intervals $$ (-\infty, 0), \quad ( 0, \frac{1}{2} ), \quad \text {and } ( \frac{1}{2} , \infty) . $$ (1) Test a number in the interval $(-\infty, 0) $ say $-1$: $$ \begin{aligned} f^{\prime}(-1) &=\frac{2\left(8 (-1)^{3}-1\right)}{(-1)^{3}} \\ &=18 \\ & \gt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(-\infty, 0) $. (2) Test a number in the interval $( 0, \frac{1}{2} ) $ say $\frac{1}{3}$: $$ \begin{aligned} f^{\prime}(\frac{1}{3}) &=\frac{2\left(8 (\frac{1}{3})^{3}-1\right)}{(\frac{1}{3})^{3}}\\ &=-38 \\ & \lt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $( 0 , \frac{1}{2} ) $. (3) Test a number in the interval $( \frac{1}{2}, \infty) $ say $1$: $$ \begin{aligned} f^{\prime}(1) &=\frac{2\left(8 (1)^{3}-1\right)}{(1)^{3}}\\ &=14 \\ & \gt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $( \frac{1}{2} , \infty ) $. So, the function $f$ Increasing on $$ (-\infty, 0) \quad \text{and} \quad( \frac{1}{2} ,\infty) $$ Decreasing on $$(0, \frac{1}{2} ).$$ and we find that: relative minimum at $ \frac{1}{2},$ Set $f^{\prime\prime}(x)$ equal to $0$ and solve for $x$. $$ \begin{aligned} f^{\prime \prime}(x) &=6x^{-4} \\ \Rightarrow\quad\quad\quad\quad\quad\\ \text { is never equal to zero.} \end{aligned} $$ so There are no inflection points. (Recall that $f(x)$ does not exist at $x=0$) Now, we can use the second derivative test. Check the sign of $f^{\prime\prime}(x)$. in the intervals $$ (-\infty, 0), \quad \quad ( 0 ,\infty ). $$ $$ \begin{array}{l} f^{\prime \prime}(-1)=6(-1)^{-4} =6 \gt 0 \\ f^{\prime \prime}(1)=6(1)^{-4} =6 \gt 0 \\ \end{array} $$ Test a number in the interval $(-\infty, 0)$ and $(0, \infty )$ we find $f^{\prime\prime}(x)$ is positive in these intervals, so $f(x)$ is concave upward on $(-\infty, 0)$ and $(0, \infty )$ . Since $f(x)$ is never zero, so there are no x-intercepts. y-intercept: Since $f(x)$ does not exist for $x=0 $ so there is no y-intercept. Vertical asymptotic at $x=0$ $$ \lim\limits_{x \to 0}f(x)=\infty $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.