Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.4 Curve Sketching - 5.4 Exercises - Page 295: 10

Answer

$$ f(x)=x^{5}-15x^{3} $$ Domain is $(-\infty, \infty)$ $$ \begin{aligned} f(-x) &=(-x)^{5}-15(-x)^{3}=-f(x) \end{aligned} $$ The graph is symmetric about the origin. The critical numbers are: $x =0$, $x=-3$, and $x=3$ . Critical point: $$ (0,0) , \quad (-3 ,162), \quad \text {and} \quad (3 , -162) $$ No relative extreme at $0$ , relative minimum at $3,$ and relative maximum at $ -3$ The function $f$ Increasing on $$ (-\infty, -3) \quad \text{and} \quad(3,\infty) $$ Decreasing on $$(-3, 3)$$ $(0 , f(0))$ and $(\frac{3}{\sqrt 2} , f(\frac{3}{\sqrt 2}))$, and $(\frac{-3}{\sqrt 2} , f(\frac{-3}{\sqrt 2}))$ are inflection point. The points of inflection are $$ ( 0 , 0 ) \quad, (\frac{3}{\sqrt 2}, -100.23) \quad \text{and} \quad (\frac{-3}{\sqrt 2}, 100.23)$$ $f(x)$ is concave downward on $(-\infty,\frac{-3}{\sqrt 2})$ and $(0,\frac{3}{\sqrt 2} )$. $f(x)$ is concave upward on $(\frac{-3}{\sqrt 2}, 0 )$ and $(\frac{3}{\sqrt 2} , \infty )$ . y-intercept: $$ f(0)=(0)^{5}-15(0)^{3}=0 $$ $x$ -intercepts: $$ \begin{aligned} f^{\prime\prime}(x)&= x^{5}-15 x^{3}=0\\ &= x^{3} (x^{2}-15 )=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ & x^{3}=0 \quad \text{or} \quad (x^{2}-15 )=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ & x=0, \quad x=\pm \sqrt{15} \\ \end{aligned} $$

Work Step by Step

$$ f(x)=x^{5}-15x^{3} $$ Domain is $(-\infty, \infty)$ $$ \begin{aligned} f(-x) &=(-x)^{5}-15(-x)^{3}\\ &=-x^{5}+15 x^{3}\\ &=-f(x) \end{aligned} $$ The graph is symmetric about the origin. To find the intervals where the function is increasing and decreasing. First, we find $f^{\prime}(x) $, $$ \begin{aligned} f^{\prime}(x)&= 5 x^{4}-45 x^{2} \\ &= 5 x^{2}\left(x^{2}-9\right) \\ &=5 x^{2}(x+3)(x-3) \end{aligned} $$ To find the critical numbers, we first find any values of $x$ that make $f^{\prime} =0 $. Now, solve the equation $f^{\prime} =0 $ to get $$ \begin{aligned} f^{\prime}(x) & =5 x^{2}(x+3)(x-3)=0 \\ \Rightarrow \quad\quad\quad\quad\\ & x=0 , \quad\text{or}\quad x+3=0 ,\quad \text{or} \quad x-3 =0 \\ & x=0 , \quad\text{or}\quad x=-3 ,\quad \text{or} \quad x=3 \end{aligned} $$ So, the critical numbers are: $x =0$, $x=-3$, and $x=3$ . To find the critical points substituting in $f$ as follows: $$ f(0)=(0)^{5}-15(0)^{3}=0 $$ $$ f(-3)=(-3)^{5}-15(-3)^{3}=162 $$ $$ f(3)=(3)^{5}-15(3)^{3}=-162 $$ So, Critical point: $$ (0,0) , \quad (-3 ,162), \quad \text {and} \quad (3 , -162) $$ We can still apply the second derivative test, however, to find where $f$ is increasing and decreasing. as follows : $$ \begin{array}{c} f^{\prime \prime}(x)=20 x^{3}-90 x \\ f^{\prime \prime}(- 3)=20 (-3)^{3}-90 (-3) =-270 \lt 0 \\ f^{\prime \prime}(0)=20 (0)^{3}-90 (0)= 0 \\ f^{\prime \prime}(3)=20 (3)^{3}-90 (3) =270 \gt 0 \end{array} $$ we find that No relative extreme at $0$ , relative minimum at $3,$ and relative maximum at $ -3$ So, the function $f$ Increasing on $$ (-\infty, -3) \quad \text{and} \quad(3,\infty) $$ Decreasing on $$(-3, 3)$$ Set $f^{\prime\prime}(x)$ equal to $0$ and solve for $x$. $$ \begin{aligned} f^{\prime \prime}(x) &=20 x^{3}-90 x=0 \\ &=10 x\left(2x^{2}-9\right)=0 \\ \Rightarrow\quad\quad\quad\quad\quad\\ & x\left(2x^{2}-9\right) =0 \\ \Rightarrow\quad\quad\quad\quad\quad\\ & x=0 , \quad\text{or}\quad x=\frac{-3}{\sqrt 2},\quad \text{or} \quad x=\frac{3}{\sqrt 2} \end{aligned} $$ so $(0 , f(0))$ and $(\frac{3}{\sqrt 2} , f(\frac{3}{\sqrt 2}))$, and $(\frac{-3}{\sqrt 2} , f(\frac{-3}{\sqrt 2}))$ are inflection point. Now ,we find $f(0) $, f(\frac{3}{\sqrt 2}) and f(\frac{-3}{\sqrt 2}) as follows: $$ f(0)=(0)^{5}-15(0)^{3}=0 $$ , $$ f(\frac{3}{\sqrt 2})=(\frac{3}{\sqrt 2})^{5}-15(\frac{3}{\sqrt 2})^{3}=(\frac{3}{\sqrt 2})^{5}-15(\frac{3}{\sqrt 2})^{3} \approx -100.23 $$ and $$ f(\frac{-3}{\sqrt 2})=(\frac{-3}{\sqrt 2})^{5}-15(\frac{-3}{\sqrt 2})^{3}=(\frac{-3}{\sqrt 2})^{5}-15(\frac{-3}{\sqrt 2})^{3} \approx 100.23 $$ So,the points of inflection are $$ ( 0 , 0 ) \quad, (\frac{3}{\sqrt 2}, -100.23) \quad \text{and} \quad (\frac{-3}{\sqrt 2}, 100.23)$$ $$ \begin{array}{l} f^{\prime \prime}(-3)=20 (-3)^{3}-90 (-3)=-270 \lt 0 \\ f^{\prime \prime}(-2)=20 (-2)^{3}-90 (-2)=20 \gt 0\\ f^{\prime \prime}(3)=-12 (-2)^{2}+12=270 \gt 0 \\ f^{\prime \prime}(2)=-12 (-2)^{-2}+12=-20 \lt 0 \\ \end{array} $$ Test a number in the intervals $(-\infty,\frac{-3}{\sqrt 2})$ and $(0,\frac{3}{\sqrt 2} )$ we find $f^{\prime\prime}(x)$ is negative in these intervals, so $f(x)$ is concave downward on $(-\infty,\frac{-3}{\sqrt 2})$ and $(0,\frac{3}{\sqrt 2} )$. Test a number in the interval $(\frac{-3}{\sqrt 2}, 0 )$ and $(\frac{3}{\sqrt 2} , \infty )$ to find $f^{\prime\prime}(x)$ positive in these intervals, so $f(x)$ is concave upward on $(\frac{-3}{\sqrt 2}, 0 )$ and $(\frac{3}{\sqrt 2} , \infty )$ . y-intercept: $$ f(0)=(0)^{5}-15(0)^{3}=0 $$ $x$ -intercepts: $$ \begin{aligned} f^{\prime\prime}(x)&= x^{5}-15 x^{3}=0\\ &= x^{3} (x^{2}-15 )=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ & x^{3}=0 \quad \text{or} \quad (x^{2}-15 )=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ & x=0, \quad x=\pm \sqrt{15} \\ \end{aligned} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.