Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.4 Curve Sketching - 5.4 Exercises - Page 295: 9

Answer

$$ f(x)=x^{4}-4x^{3} $$ Domain is $(-\infty, \infty)$ $$ \begin{aligned} f(-x) \neq f(x) \text { or }-f(x) \end{aligned} $$ No symmetry. the critical numbers are: $x =0$, $x=3$. Critical points: $$ (0, 0) , \quad (3 ,-27)$$ Relative minimum at $3$ Neither a relative minimum nor maximum at 0 . Also, we find that the function $f$ decreasing on $$(-\infty, 3)$$ and increasing on $$(3 , \infty) $$. The points of inflection are $$ ( 0 , 0 ) \quad \text{and} \quad ( 2 , -16)$$ $f(x)$ is concave upward on $(-\infty,0)$ and $(2, \infty)$. $f(x)$ is concave downward on $(0 , 2)$ and y-intercept: $$ f(0)=0 $$

Work Step by Step

$$ f(x)=x^{4}-4x^{3} $$ Domain is $(-\infty, \infty)$ $$ \begin{aligned} f(-x) &=(-x)^{4}-4(-x)^{3} \\ &=x^{4}+4 x^{3} \neq f(x) \text { or }-f(x) \end{aligned} $$ No symmetry. To find the intervals where the function is increasing and decreasing. First, we find $f^{\prime}(x) $, $$ \begin{aligned} &f^{\prime}(x)=4 x^{3}-12 x^{2}\\ &=4 x^{3}-12 x^{2}\\ &=4 x^{2}(x-3) \end{aligned} $$ To find the critical numbers, we first find any values of $x$ that make $f^{\prime} =0 $. Now, solve the equation $f^{\prime} =0 $ to get $$ \begin{aligned} &f^{\prime}(x)=4 x^{3}-12 x^{2}\\ &4 x^{3}-12 x^{2}=0\\ &4 x^{2}(x-3)=0\\ \Rightarrow \quad\quad\quad\quad\\ & x=0 , \quad\text{or}\quad x-3 =0 \\ & x=0 , \quad\text{or}\quad x =3 \\ \end{aligned} $$ So, the critical numbers are: $x =0$, $x=3$. To find the critical points substituting in $f$ as follows: $$ f(0)=(0)^{4}-4(0)^{3}=0 $$ $$ f(3)=(3)^{4}-4(3)^{3}=-27 $$ So, Critical points: $$ (0, 0) , \quad (3 ,-27)$$ We can still apply the second derivative test, however, to find where $f$ is increasing and decreasing. as follows : $$ \begin{array}{c} f^{\prime \prime}(x)=12 x^{2}-24x \\ f^{\prime \prime}(3)=12 (3)^{2}-24(3) =36 \gt 0 \\ f^{\prime \prime}(0)=12 (0)^{2}-24(0) =0 \\ \end{array} $$ we find that Relative minimum at $3$ Second derivative test fails for 0, We can still apply the first derivative test, however, to find where $f$ is increasing and decreasing. We observe, the number $0$ divides the number line into two intervals: $(-\infty, 0)$ and $(0,3)$. use a test point in each of these intervals to find that sign of $f^{\prime} $ , as follows: $$ \begin{array}{c} f^{\prime}(-1)-4(-1)^{3}-12(-1)^{2}--16<0 \\ f^{\prime}(1)=4(1)^{3}-12(1)^{2}=-8<0 \end{array} $$ So, we find that neither a relative minimum nor maximum at 0 . Also, we find that the function $f$ decreasing on $$(-\infty, 3)$$ and increasing on $$(3 , \infty) $$. Set $f^{\prime\prime}(x)$ equal to $0$ and solve for $x$. $$ \begin{aligned} f^{\prime \prime}(x) &=12 x^{2}-24 x =0 \\ & 12 x(x-2) =0 \\ \Rightarrow\quad\quad\quad\quad\quad\\ &x =0 \text { or } x-2=0\\ \Rightarrow\quad\quad\quad\quad\quad\\ &x =0 \text { or } x=2\\ \end{aligned} $$ so $(0 , f(0)$ and $(2 , f(2)$ are inflection point. Now ,we find $f(0) $ and f(2) as follows: $$ f(0)=(0)^{4}-4(0)^{3}=0 $$ and $$ f(2)=(2)^{4}-4(2)^{3}=-16 $$ So,the points of inflection are $$ ( 0 , 0 ) \quad \text{and} \quad ( 2 , -16)$$ $$ \begin{array}{l} f^{\prime \prime}(-1)=12 (-1)^{2}-24 (-1)=36 \gt 0 \\ f^{\prime \prime}(1)=12 (1)^{2}-24 (1)=-12 \lt 0\\ f^{\prime \prime}(3)=12 (3)^{2}-24 (3)=36 \gt 0 \\ \end{array} $$ Test a number in the intervals $(-\infty,0)$ and $(2, \infty)$ to find $f^{\prime\prime}(x)$ positive in these intervals, so $f(x)$ is concave upward on $(-\infty,0)$ and $(2, \infty)$. Test a number in the interval $(0, 2)$ to find $f^{\prime\prime}(x)$ negative in that interval, so $f(x)$ is concave downward on $(0 , 2)$ and y-intercept: $$ f(0)=(0)^{4}-4(0)^{3}=0 $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.