Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 5 - Graphs and the Derivative - 5.4 Curve Sketching - 5.4 Exercises - Page 295: 11

Answer

$$ f(x)=2x+\frac{10}{x} $$ The domain is $$(-\infty, 0) \cup(0, \infty)$$ The graph is symmetric about the origin. The critical numbers are: $x =\sqrt{5} $ and $x=-\sqrt{5}$ . Critical point: $$ (\sqrt{5} , 4\sqrt{5} ) , \quad (-\sqrt{5}, - 4\sqrt{5}) $$ The function $f$ Increasing on $$ (-\infty, -\sqrt{5}) \quad \text{and} \quad(\sqrt{5},\infty) $$ Decreasing on $$(-\sqrt{5} , \sqrt{5}).$$ Relative minimum at $\sqrt{5},$ and relative maximum at $ -\sqrt{5}$ There are no inflection points. $f(x)$ is concave downward on $(-\infty, 0)$ . $f(x)$ is concave upward on $(0, \infty )$ . Since $f(x)$ is never zero, so there are no x-intercepts. Since $f(x)$ does not exist for $x=0 $ so there is no y-intercept. Vertical asymptotic at $x=0$ $$ \lim\limits_{x \to 2}f(x)=\infty. $$

Work Step by Step

$$ f(x)=2x+\frac{10}{x}=2x+10x^{-1} $$ since $f(x)$ does not exist when $x=0,$ the domain is $$(-\infty, 0) \cup(0, \infty)$$ $$ \begin{aligned} f(-x) &=2(-x)+\frac{10}{(-x)}\\ &=-\left(2 x+10 x^{-1}\right)\\ &=-f(x) \end{aligned} $$ The graph is symmetric about the origin. To find the intervals where the function is increasing and decreasing. First, we find $f^{\prime}(x) $, $$ \begin{aligned} f^{\prime}(x)&= 2-10 x^{-2} \\ &= 2-\frac{10}{x^{2}} \\ &=\frac{2\left(x^{2}-5\right)}{x^{2}} \end{aligned} $$ To find the critical numbers, we first find any values of $x$ that make $f^{\prime} =0 $. Now, solve the equation $f^{\prime} =0 $ to get $$ \begin{aligned} f^{\prime}(x) & =\frac{2\left(x^{2}-5\right)}{x^{2}}=0 \\ \Rightarrow \quad\quad\quad\quad\\ x=\pm \sqrt{5} \end{aligned} $$ So, the critical numbers are: $x =\sqrt{5} $ and $x=-\sqrt{5}$ . To find the critical points substituting in $f$ as follows: $$ f(\sqrt{5})=2(\sqrt{5})+\frac{10}{(\sqrt{5})}= 4\sqrt{5} $$ $$ f(-\sqrt{5})=2(-\sqrt{5})+\frac{10}{(-\sqrt{5})}=- 4\sqrt{5} $$ So, Critical point: $$ (\sqrt{5} , 4\sqrt{5} ) , \quad (-\sqrt{5}, - 4\sqrt{5}) $$ Now, we can use the first derivative test. Check the sign of $f^{\prime}(x)$. in the intervals $$ (-\infty, -\sqrt{5}), \quad ( -\sqrt{5}, 0), \quad ( 0 , \sqrt{5}) \quad \text {and }\quad ( \sqrt{5}, \infty ) . $$ (1) Test a number in the interval $(-\infty, -\sqrt{5}) $ say $-3$: $$ \begin{aligned} f^{\prime}(-3) &=\frac{2\left((-3)^{2}-5\right)}{(-3)^{2}} \\ &=\frac{8}{9} \approx 0.8 \\ & \gt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $(-\infty, -\sqrt{5})$. (2) Test a number in the interval $( -\sqrt{5}, 0) $ say $-1$: $$ \begin{aligned} f^{\prime}(-1) &=\frac{2\left((-1)^{2}-5\right)}{(-1)^{2}} \\ &=-8 \\ & \lt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $( -\sqrt{5}, 0) $. (3) Test a number in the interval $( 0, \sqrt{5}) $ say $1$: $$ \begin{aligned} f^{\prime}(1) &=\frac{2\left((1)^{2}-5\right)}{(1)^{2}} \\ &=-8 \\ & \lt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is negative in that interval, so $f(x)$ is decreasing on $( 0, \sqrt{5}) $. (4) Test a number in the interval $( \sqrt{5}, \infty) $ say $ 3$: $$ \begin{aligned} f^{\prime}(3) &=\frac{2\left((3)^{2}-5\right)}{(3)^{2}} \\ &=\frac{8}{9} \approx 0.8 \\ & \gt 0 \end{aligned} $$ we see that $f^{\prime}(x)$ is positive in that interval, so $f(x)$ is increasing on $( \sqrt{5}, \infty)$. So, the function $f$ Increasing on $$ (-\infty, -\sqrt{5}) \quad \text{and} \quad(\sqrt{5},\infty) $$ Decreasing on $$(-\sqrt{5} , \sqrt{5}).$$ and we find that: relative minimum at $\sqrt{5},$ and relative maximum at $ -\sqrt{5}$ Set $f^{\prime\prime}(x)$ equal to $0$ and solve for $x$. $$ \begin{aligned} f^{\prime \prime}(x) &=20 x^{-3}=\frac{20}{x^{3}} \\ \Rightarrow\quad\quad\quad\quad\quad\\ f^{\prime \prime}(x) \text { is never equal to zero.} \end{aligned} $$ so There are no inflection points. (Recall that $f(x)$ does not exist at $x=0$) Now, we can use the second derivative test. Check the sign of $f^{\prime\prime}(x)$. in the intervals $$ (-\infty, 0), \quad \quad ( 0 ,\infty ). $$ $$ \begin{array}{l} f^{\prime \prime}(-1)=20 (-1)^{-3} =-20 \lt 0 \\ f^{\prime \prime}(1)=20 (1)^{-3} =20 \gt 0 \\ \end{array} $$ Test a number in the interval $(-\infty, 0)$ we find $f^{\prime\prime}(x)$ is negative in these interval, so $f(x)$ is concave downward on $(-\infty, 0)$ . Test a number in the interval $(0, \infty )$ we find $f^{\prime\prime}(x)$ is positive in these interval, so $f(x)$ is concave upward on $(0, \infty )$ . Since $f(x)$ is never zero, so there are no x-intercepts. y-intercept: Since $f(x)$ does not exist for $x=0 $ so there is no y-intercept. Vertical asymptotic at $x=0$ $$ \lim\limits_{x \to 2}f(x)=\infty $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.