Calculus with Applications (10th Edition)

Published by Pearson
ISBN 10: 0321749006
ISBN 13: 978-0-32174-900-0

Chapter 3 - The Derivative - 3.2 Continuity - 3.2 Exercises - Page 147: 16

Answer

$$ j(x)=e^{\frac{1}{x}} $$ The power of this exponential function is rational function, and rational function is discontinuous wherever the denominator is zero. There is a discontinuity when $x=0$ . so the function is discontinuous at $a=0$. $$ \lim _{x \rightarrow 0^{+}} j(x)=\infty \quad \quad \text {(limit does not exist) } $$ and $$ \lim _{x \rightarrow 0^{-}} j(x)=0 $$ Since $$ \lim _{x \rightarrow 0^{-}} j(x) \ne \lim _{x \rightarrow 0^{+}} j(x) $$ then, $$ \lim _{x \rightarrow 0} j(x) \quad \quad \text {(does not exist) } $$

Work Step by Step

$$ j(x)=e^{\frac{1}{x}} $$ The power of this exponential function is rational function, and rational function is discontinuous wherever the denominator is zero. There is a discontinuity when $x=0$ . so the function is discontinuous at $a=0$. $$ \lim _{x \rightarrow 0^{+}} j(x)=\infty \quad \quad \text {(limit does not exist) } $$ and $$ \lim _{x \rightarrow 0^{-}} j(x)=0 $$ Since $$ \lim _{x \rightarrow 0^{-}} j(x) \ne \lim _{x \rightarrow 0^{+}} j(x) $$ then, $$ \lim _{x \rightarrow 0} j(x) \quad \quad \text {(does not exist) } $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.