# Chapter 12 - Sequences and Series - 12.1 Geometric Sequences - 12.1 Exercises - Page 612: 34

$${S_{10}} = \frac{{3069}}{4}$$

#### Work Step by Step

\eqalign{ & \sum\limits_{i = 0}^9 {\frac{3}{4}{{\left( 2 \right)}^i}} \cr & {S_n}{\text{ we write using summation notation as}}:{\text{ }}\left( {{\text{see page 612}}} \right) \cr & {S_n} = \sum\limits_{i = 0}^{n - 1} {a{r^i}} \cr & {\text{comparing the given sumation }}\sum\limits_{i = 0}^9 {\frac{3}{4}{{\left( 2 \right)}^i}} {\text{ with }}\sum\limits_{i = 0}^{n - 1} {a{r^i}} {\text{ we obtain }} \cr & a = \frac{3}{4}{\text{ and }}r = 2 \cr & {\text{the summation is from }}i = 0{\text{ to }}n - 1 = 9,{\text{ so }}n = 10 \cr & {\text{using the formula }}{S_n} = \frac{{a\left( {{r^n} - 1} \right)}}{{r - 1}},{\text{ }}r \ne 1{\text{ gives}} \cr & {S_{10}} = \frac{{\left( {3/4} \right)\left( {{2^{10}} - 1} \right)}}{{2 - 1}} \cr & {\text{simplify}} \cr & {S_{10}} = \frac{3}{4}\left( {1023} \right) \cr & {S_{10}} = \frac{{3069}}{4} \cr}

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.