#### Answer

$${S_5} = 93$$

#### Work Step by Step

$$\eqalign{
& {a_1} = 3,{a_2} = 6,{a_3} = 12,{a_4} = 24,... \cr
& {\text{to verify that the sequence is geometric}}{\text{, divide each term except the first by }} \cr
& {\text{the preceding term}} \cr
& \frac{{{a_4}}}{{{a_3}}} = \frac{{24}}{{12}} = 2 \cr
& \frac{{{a_3}}}{{{a_2}}} = \frac{{12}}{6} = 2 \cr
& \frac{{{a_2}}}{{{a_1}}} = \frac{6}{3} = 2 \cr
& {\text{the ratio is constant}}{\text{, so the sequence is geometric with }}r = 2 \cr
& {\text{then the sum of the first }}n{\text{ terms}}{\text{ is given by}} \cr
& {S_n} = \frac{{{a_1}\left( {{r^n} - 1} \right)}}{{r - 1}},{\text{ where }}r \ne 1 \cr
& {\text{let }}n = 5,\,\,\,{a_1} = 3{\text{ and }}r = 2 \cr
& {S_5} = \frac{{\left( 3 \right)\left( {{2^5} - 1} \right)}}{{2 - 1}} \cr
& {\text{simplifying}} \cr
& {S_5} = 93 \cr} $$