Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 7 - Section 7.5 - Strategy for Integration - 7.5 Exercises - Page 508: 76

Answer

$$\frac{1}{2}x\sqrt {{x^2} + 1} - \frac{1}{2}\ln \left| {\sqrt {{x^2} + 1} + x} \right| + C$$

Work Step by Step

$$\eqalign{ & \int {\frac{{{x^2}}}{{\sqrt {{x^2} + 1} }}} dx \cr & {\text{Let }}x = \tan \theta ,{\text{ }}dx = {\sec ^2}\theta d\theta \cr & {\text{Substituting}} \cr & \int {\frac{{{x^2}}}{{\sqrt {{x^2} + 1} }}} dx = \int {\frac{{{{\left( {\tan \theta } \right)}^2}}}{{\sqrt {{{\left( {\tan \theta } \right)}^2} + 1} }}} \left( {{{\sec }^2}\theta } \right)d\theta \cr & = \int {\frac{{{{\tan }^2}\theta }}{{\sqrt {{{\sec }^2}\theta } }}} \left( {{{\sec }^2}\theta } \right)d\theta \cr & = \int {{{\tan }^2}\theta \sec \theta } d\theta \cr & {\text{Use pythagorean identity}} \cr & = \int {\left( {{{\sec }^2}\theta - 1} \right)\sec \theta } d\theta \cr & = \int {\left( {{{\sec }^3}\theta - \sec \theta } \right)} d\theta \cr & = \int {{{\sec }^3}\theta } d\theta - \int {\sec \theta } d\theta \cr & {\text{Integrating}} \cr & = \frac{1}{2}\sec \theta \tan \theta + \frac{1}{2}\ln \left| {\sec \theta + \tan \theta } \right| - \ln \left| {\sec \theta + \tan \theta } \right| + C \cr & = \frac{1}{2}\sec \theta \tan \theta - \frac{1}{2}\ln \left| {\sec \theta + \tan \theta } \right| + C \cr & {\text{Write in terms of }}x \cr & = \frac{1}{2}x\sqrt {{x^2} + 1} - \frac{1}{2}\ln \left| {\sqrt {{x^2} + 1} + x} \right| + C \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.