Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 3 - Section 3.6 - Derivatives of Logarithmic Functions - 3.6 Exercises - Page 223: 4


$f'(x) = 2cotx$

Work Step by Step

$f(x) = \ln (sin^{2}x)$ Use the chain rule: $f'(x) = (\frac{1}{sin^{2}x})(2sinx)(cosx)$ $f'(x) = (\frac{2sinx}{sin^{2}x})(cosx)$ Cancel out $sinx$: $f'(x) = (\frac{2}{sinx})(cosx)$ Multiply: $f'(x) = (\frac{2cosx}{sinx})$ Given trigonometric function: $\frac{cosx}{sinx} = cotx$ $f'(x) = 2cotx$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.