Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.8 - Stokes'' Theorem - 16.8 Exercise - Page 1139: 4

Answer

$0$

Work Step by Step

Stokes' Theorem can be defined as: $\iint_{S} curl F \cdot dS=\iint_{C} F \cdot dr $ The surface is the part of the cone $x=\sqrt {y^2+z^2} $ for which $0 \leq x \leq 2$ and the boundary of this surface is a circle parallel to the yz plane. Thus, the parameterization of the boundary can be written as: $C: r(t)=2i+2 \cos t j+2 \sin t k \implies dr=0i-2 \sin t j$ Now, $F(r(t))=[arctan (32 \cos t \sin^2 t) i+8 \cos t j+16 \sin^2t k]$ $\iint_{S} curl F \cdot dS=\iint_{C} F \cdot dr=\int_0^{2 \pi} (arctan (32 \cos t \sin^2 t) i+8 \cos t j+16 \sin^2t k) \cdot (0i-2\sin t j+2 \cos t k) dt \\\\ =\int_{2 \pi}^{0} (-16 \sin t +32 \sin^2 t) (\cos t dt)$ Consider $\sin t =a$ and $\cos t dt=a$ or, $=\int_0^{0} (-16 at +32 a^2 t)da$ or, $=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.