Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.8 - Stokes'' Theorem - 16.8 Exercise - Page 1139: 2

Answer

$$0$$

Work Step by Step

The surface is the part of the circle $x^2+y^2=1 $ . The parameterization of the boundary is: $C: r(t)=\cos t i+\sin t j+0 k \implies dr=(-\sin t i+\cos t j+0k) dt$ We have: $F(r(t))=\cos^2 t \sin (0) i+\sin^2 t j+\cos t \sin t k=0 i i+\sin^2 t j+\cos t \sin t k$ Stokes' Theorem states that $\iint_{S} curl F \cdot dS=\iint_{C} F \cdot dr $ $=\int_0^{2 \pi} (0 i+\sin^2 t j+\cos t \sin t k) \cdot (-\sin t i+ \cos t j+0 k) dt$ $=\int_{0}^{2 \pi} \sin^2 t \cos t dt$ Plug in $a=\sin t $ and $da =\cos t dt$ Now, $\iint_{S} curl F \cdot dS=\iint_{C} F \cdot dr=\int_0^{2 \pi} a^2 da=0$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.