Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.8 - Stokes'' Theorem - 16.8 Exercise - Page 1139: 14

Answer

$8 \pi$

Work Step by Step

The parameterization for the given surface can be written as: $r=\lt 2 \cos t, 2 \sin t, 1 \gt $ and $dr = \lt -2 \sin t , 2 \cos t , 0 \gt$ Also, $F(r(t))=\lt -4 \sin t , 2 \sin t , 6 \cos t \gt$ Now, $$\iint_{S} curl F \cdot dS=\iint_{C} F \cdot dr \\= \int_{0}^{2 \pi} \lt -4 \sin t , 2 \sin t j, 6 \cos t \gt \cdot \lt -2 \sin t , 2 \cos t j, 0 \gt \\=\int_{0}^{2 \pi} 8 \sin^2 t+4 \cos t \sin t dt \\=\int_{0}^{2 \pi} 8 (\dfrac{1-\cos 2t}{2})+(2)(2) \cos t \sin t dt \\=\int_{0}^{2 \pi} 4+2 \sin 2t -4 \cos 2t dt \\=\int_{0}^{2 \pi} 2 \sin t -8 \cos 2t dt+ \int_0^{2 \pi} 4 dt\\=[4t-2 \sin 2t -\cos 2t]_0^{2 \pi}\\=4 [(2 \pi) -0-1-(0-0-1)] \\=8 \pi$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.