Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.8 - Stokes'' Theorem - 16.8 Exercise - Page 1139: 16

Answer

$$\dfrac{2 A}{\sqrt 3}$$

Work Step by Step

Re-write the equation of the surface as: $\int_{C} F \cdot dr=\int_{C} (z i-2 x j+3y k) \cdot (dx i+dy j+dz k)$ Let $S$ be the part of the plane $x+y+z=1$ and the region enclosed by the loop $C$. Stokes' Theorem states that $\iint_{S} curl F \cdot dS=\iint_{C} F \cdot dr $ We have: $curl F=3i+j-2k$ Now, $$\int_{C} F \cdot dr=\iint_{S} F \cdot dS= \iint curl F \cdot n dS\\=\dfrac{1}{\sqrt 3} \iint_{S}(3 i+j -2k) \cdot (i+j+k) dS\\\\=\dfrac{1}{\sqrt 3} \times \iint_{S}(3+1 -2) dS \\ =\dfrac{2}{\sqrt 3} \times \iint_{S} dS\\ =\dfrac{2 A}{\sqrt 3}$$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.