Calculus: Early Transcendentals 8th Edition

Published by Cengage Learning
ISBN 10: 1285741552
ISBN 13: 978-1-28574-155-0

Chapter 16 - Section 16.8 - Stokes'' Theorem - 16.8 Exercise - Page 1139: 15

Answer

$- \pi$

Work Step by Step

Stokes' Theorem states that $\iint_{S} curl F \cdot dS=\iint_{C} F \cdot dr $ The parameterization for the given surface can be written as: $r=\lt \cos t, 0, \sin t \gt \implies dr = \lt - \sin t ,0, \cos t \gt$ Now, $\iint_{S} curl F \cdot dS=\iint_{C} F \cdot dr \\= \int_{2 \pi}^{0} \lt 0, \sin t , \cos t \gt \cdot \lt - \sin t ,0, \cos t \gt\\=\int_{2 \pi}^{0} \cos^2 t dt \\=(1/2) \times \int_{2 \pi}^{0} 1+\cos 2t dt \\=\dfrac{1}{2} \times [t+\dfrac{\sin 2t}{t}]_{2 \pi}^0\\ =- \pi$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.