Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.7 The Chain Rule - 3.7 Exercises - Page 191: 36


a. $\frac{d}{dx}(e^x)^3 = 3e^{3x}$ b. $\frac{d}{dx}e^{x^3} = 3x^2e^{x^3}$

Work Step by Step

Chain Rule $\frac{d}{dx}[f(g(x))] = f'(g(x)) \times g'(x)$ a. $y=(e^x)^3$ Outer Function: $y=f(u)=u^3$ Inner Function: $u=g(x)=e^x$ $\frac{d}{dx}(e^x)^3 = 3e^{2x} \times e^x = 3e^{3x}$ b. $y=e^{x^3}$ Outer Function: $y=f(u)=e^x$ Inner Function: $u=g(x)=x^3$ $\frac{d}{dx}e^{x^3} = e^{x^3} \times 3x^2$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.