Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 3 - Derivatives - 3.7 The Chain Rule - 3.7 Exercises: 29

Answer

\[\frac{{dy}}{{dx}} = \,\left( {12x + 3} \right)\cos \,\left( {4{x^3} + 3x + 1} \right)\]

Work Step by Step

\[\begin{gathered} y = \sin \,\left( {4{x^3} + 3x + 1} \right) \hfill \\ \hfill \\ Use\,\,the\,\,version\,\,2\,\,of\,\,the\,\,chain\,\,rule\, \hfill \\ \hfill \\ \,\frac{d}{{dx}}\,\,\left[ {f\,\left( {g\,\left( x \right)} \right)} \right] = {f^,}\,\left( {g\,\left( x \right)} \right) \cdot {g^,}\,\left( x \right) \hfill \\ \hfill \\ set\,\,g\,\left( x \right) = 4{x^3} + 3x + 1 \hfill \\ \,\,\,\,\,\,\,\,\,\,\,{g^,}\,\left( x \right) = 12x + 3 \hfill \\ \hfill \\ therefore \hfill \\ \hfill \\ \frac{{dy}}{{dx}} = \cos \,\left( {4{x^3} + 3x + 1} \right)\,\left( {12x + 3} \right) \hfill \\ \hfill \\ simplify \hfill \\ \hfill \\ \frac{{dy}}{{dx}} = \,\left( {12x + 3} \right)\cos \,\left( {4{x^3} + 3x + 1} \right) \hfill \\ \end{gathered} \]
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.