Answer
$x =3 \cos u; y=3 \sin u$ and $z=v$
; $0 \lt u \lt \dfrac{\pi}{4}$ and $0 \lt v \lt 3$
Work Step by Step
We are given the equation of the portion of a cylinder as: $x^2+y^2=9 $
and $0 \lt z \lt 3$
The parametric description of a cylinder can be expressed as:
$x =3 \cos \theta; y=3 \sin \theta$ and $z=v$
Suppose that $u=\theta$
Thus, the parametric form of a cylinder can be expressed as:
$x =3 \cos u; y=3 \sin u$ and $z=v$
; $0 \lt u \lt \dfrac{\pi}{4}$ and $0 \lt v \lt 3$