Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 14 - Vector Calculus - 14.6 Surface Integrals - 14.6 Exercises - Page 1123: 12

Answer

$x =4 \sin v \cos u; y=4 \sin v \sin u$ and $z=4 \cos v$; $0 \lt u \lt 2\pi$ and $\dfrac{\pi}{4} \lt v \lt \dfrac{\pi}{2}$

Work Step by Step

We are given the equation of a sphere as: $x^2+y^2+z^2=16 $ and $2\sqrt 2 \lt z \lt 4$ The parametric description of a sphere with radius $a$ can be expressed as: $x =4 \sin \phi \cos \theta; y=4 \sin \phi \sin \theta$ and $z=4 \cos \phi$ Suppose that $u=\theta$ and $v=\phi$ Thus, the parametric form of a sphere can be expressed as: $x =4 \sin v \cos u; y=4 \sin v \sin u$ and $z=4 \cos v$; $0 \lt u \lt 2\pi$ and $\dfrac{\pi}{4} \lt v \lt \dfrac{\pi}{2}$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.