Answer
$x =2v \cos u; y=2v \sin u$ and $z=2v$ ; $0 \lt u \lt 2 \pi$ and $0 \lt v \lt 4$
Work Step by Step
We are given the equation of a cone as: $z^2=4(x^2+y^2) $
and $0 \lt z \lt 4$
The parametric description of a sphere with radius $a$ can be expressed as:
$x =2v \cos \theta; y=2v \sin \theta$ and $z=2v$
Suppose that $u=\theta$
Thus, the parametric form of a sphere can be expressed as:
$x =2v \cos u; y=2v \sin u$ and $z=2v$ ; $0 \lt u \lt 2 \pi$ and $0 \lt v \lt 4$