Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.4 Triple Integrals - 13.4 Exercises - Page 1003: 11

Answer

$$\frac{2}{\pi }$$

Work Step by Step

$$\eqalign{ & \int_0^{\pi /2} {\int_0^1 {\int_0^{\pi /2} {\sin \pi x\cos y\sin 2z} dy} dx} dz \cr & = \int_0^{\pi /2} {\int_0^1 {\left[ {\int_0^{\pi /2} {\sin \pi x\cos y\sin 2z} } \right]dy} dx} dz \cr & {\text{Integrate with respect to }}y \cr & = \int_0^{\pi /2} {\int_0^1 {\sin \pi x\sin 2z\left[ {\int_0^{\pi /2} {\cos y} } \right]dy} dx} dz \cr & = \int_0^{\pi /2} {\int_0^1 {\sin \pi x\sin 2z\left[ {\sin y} \right]_0^{\pi /2}} dx} dz \cr & = \int_0^{\pi /2} {\int_0^1 {\sin \pi x\sin 2z} dx} dz \cr & {\text{Integrate with respect to }}x \cr & = \int_0^{\pi /2} {\sin 2z\int_0^1 {\sin \pi x} dx} dz \cr & = - \int_0^{\pi /2} {\frac{{\sin 2z}}{\pi }\left[ {\cos \pi x} \right]_0^1} dz \cr & = - \int_0^{\pi /2} {\frac{{\sin 2z}}{\pi }\left( { - 2} \right)} dz \cr & = \frac{2}{\pi }\int_0^{\pi /2} {\sin 2z} dz \cr & {\text{Integrate with respect to }}z \cr & = - \frac{1}{\pi }\left[ {\cos 2z} \right]_0^{\pi /2} \cr & = - \frac{1}{\pi }\left[ {\cos \pi - \cos 0} \right] \cr & = \frac{2}{\pi } \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.