Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.4 Triple Integrals - 13.4 Exercises - Page 1002: 10

Answer

3

Work Step by Step

$$\eqalign{ & \int_0^{\ln 4} {\int_0^{\ln 3} {\int_0^{\ln 2} {{e^{ - x + y + z}}} dx} dy} dz \cr & = \int_0^{\ln 4} {\int_0^{\ln 3} {\int_0^{\ln 2} {{e^{ - x + y + z}}} dx} dy} dz \cr & {\text{Integrate with respect to }}x \cr & = \int_0^{\ln 4} {\int_0^{\ln 3} {\left[ { - {e^{ - x + y + z}}} \right]} _0^{\ln 2}dy} dz \cr & = \int_0^{\ln 4} {\int_0^{\ln 3} {\left[ { - {e^{ - \ln 2 + y + z}} + {e^{y + z}}} \right]} dy} dz \cr & = \int_0^{\ln 4} {\int_0^{\ln 3} {\left( { - \frac{1}{2}{e^{y + z}} + {e^{y + z}}} \right)} dy} dz \cr & = \frac{1}{2}\int_0^{\ln 4} {\int_0^{\ln 3} {{e^{y + z}}} dy} dz \cr & {\text{Integrate with respect to }}y \cr & = \frac{1}{2}\int_0^{\ln 4} {\left[ {{e^{y + z}}} \right]_0^{\ln 3}} dz \cr & = \frac{1}{2}\int_0^{\ln 4} {\left[ {{e^{\ln 3 + z}} - {e^{0 + z}}} \right]} dz \cr & = \frac{1}{2}\int_0^{\ln 4} {\left( {3{e^z} - {e^z}} \right)} dz \cr & = \int_0^{\ln 4} {{e^z}} dz \cr & {\text{Integrate with respect to }}z \cr & = \left[ {{e^z}} \right]_0^{\ln 4} \cr & = {e^{\ln 4}} - {e^0} \cr & = 3 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.