Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.4 Triple Integrals - 13.4 Exercises - Page 1003: 12

Answer

$$3\left( {e - 1} \right)$$

Work Step by Step

$$\eqalign{ & \int_0^2 {\int_1^2 {\int_0^1 {yz{e^x}} dx} dz} dy \cr & = \int_0^2 {\int_1^2 {\left[ {\int_0^1 {yz{e^x}} dx} \right]} dz} dy \cr & {\text{Integrate with respect to }}x \cr & = \int_0^2 {\int_1^2 {yz\left[ {\int_0^1 {{e^x}} dx} \right]} dz} dy \cr & = \int_0^2 {\int_1^2 {yz\left[ {{e^x}} \right]_0^1} dz} dy \cr & = \int_0^2 {\int_1^2 {yz\left( {e - 1} \right)} dz} dy \cr & = \left( {e - 1} \right)\int_0^2 {\int_1^2 {yz} dz} dy \cr & {\text{Integrate with respect to }}z \cr & = \left( {e - 1} \right)\int_0^2 {y\left[ {\frac{{{z^2}}}{2}} \right]_1^2} dy \cr & = \left( {e - 1} \right)\int_0^2 {y\left( {\frac{3}{2}} \right)} dy \cr & = \frac{{3\left( {e - 1} \right)}}{2}\int_0^2 y dy \cr & {\text{Integrate with respect to }}y \cr & = \frac{{3\left( {e - 1} \right)}}{2}\left[ {\frac{{{y^2}}}{2}} \right]_0^2 \cr & = \frac{{3\left( {e - 1} \right)}}{2}\left[ {\frac{{{2^2}}}{2} - 0} \right] \cr & = 3\left( {e - 1} \right) \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.