Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.4 Triple Integrals - 13.4 Exercises - Page 1003: 16

Answer

$$V = \pi $$

Work Step by Step

$$\eqalign{ & z = \sin y \cr & {\text{From the graph we have the region }}D \cr & D = \left\{ {\left( {x,y} \right):0 \leqslant x \leqslant \pi ,{\text{ 0}} \leqslant y \leqslant x} \right\} \cr & {\text{We can represent the volume as}} \cr & V = \int_0^\pi {\int_0^x {\sin y} dy} dx \cr & V = \int_0^\pi {\left[ {\int_0^x {\sin y} dy} \right]} dx \cr & {\text{Integrate with respect to }}y \cr & V = - \int_0^\pi {\left[ {\cos y} \right]_0^x} dx \cr & {\text{Evaluate}} \cr & V = - \int_0^\pi {\left( {\cos x - \cos 0} \right)} dx \cr & V = - \int_0^\pi {\left( {\cos x - 1} \right)} dx \cr & V = \int_0^\pi {\left( {1 - \cos x} \right)} dx \cr & {\text{Integrate and evaluate}} \cr & V = \left[ {x - \sin x} \right]_0^\pi \cr & V = \left[ {\pi - \sin \pi } \right] - \left[ {0 - \sin 0} \right] \cr & V = \pi \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.