Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.4 Triple Integrals - 13.4 Exercises - Page 1003: 18

Answer

$$V = 4$$

Work Step by Step

$$\eqalign{ & z = 2 - 4x \cr & {\text{Let }}z = 0 \cr & 2 - 4x = 0 \cr & 4x = 2 \cr & x = \frac{1}{2},{\text{ So the region }}D{\text{ is:}} \cr & D = \left\{ {\left( {x,y} \right):0 \leqslant x \leqslant \frac{1}{2},{\text{ 0}} \leqslant y \leqslant 8} \right\} \cr & {\text{We can represent the volume as}} \cr & V = \int_0^8 {\int_0^{1/2} {\left( {2 - 4x} \right)} dx} dy \cr & {\text{Integrate with respect to }}x \cr & V = \int_0^8 {\left[ {2x - 2{x^2}} \right]_0^{1/2}} dy \cr & V = \int_0^8 {\left[ {2\left( {\frac{1}{2}} \right) - 2{{\left( {\frac{1}{2}} \right)}^2}} \right]} dy \cr & V = \int_0^8 {\frac{1}{2}} dy \cr & V = \frac{1}{2}\left( {8 - 0} \right) \cr & V = 4 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.