Calculus: Early Transcendentals (2nd Edition)

Published by Pearson
ISBN 10: 0321947347
ISBN 13: 978-0-32194-734-5

Chapter 13 - Multiple Integration - 13.4 Triple Integrals - 13.4 Exercises - Page 1003: 15

Answer

$$V = 8$$

Work Step by Step

$$\eqalign{ & {\text{Let }}F\left( {x,y,z} \right) = 2x + 3y + 6z - 12 \cr & z = \frac{{12 - 2x - 3y}}{6} \cr & z = 2 - \frac{1}{3}x - \frac{1}{2}y \cr & {\text{The region }}D{\text{ is given by:}} \cr & 2x + 3y + 6z - 12 = 0 \cr & {\text{Let }}z = 0 \cr & 2x + 3y + 6\left( 0 \right) - 12 = 0 \cr & 2x + 3y = 12 \cr & y = - \frac{2}{3}x + 4 \cr & D = \left\{ {\left( {x,y,z} \right):0 \leqslant x \leqslant 6,{\text{ 0}} \leqslant y \leqslant - \frac{2}{3}x + 4} \right\} \cr & {\text{The volume of the solid is }} \cr & V = \int_0^6 {\int_0^{ - \frac{2}{3}x + 4} {\left( {2 - \frac{1}{3}x - \frac{1}{2}y} \right)} dy} dx \cr & {\text{Integrate with respect to }}y \cr & V = \int_0^6 {\left[ {2y - \frac{1}{3}xy - \frac{1}{4}{y^2}} \right]_0^{ - \frac{2}{3}x + 4}} dx \cr & V = \int_0^6 {\left[ {2\left( { - \frac{2}{3}x + 4} \right) - \frac{1}{3}x\left( { - \frac{2}{3}x + 4} \right) - \frac{1}{4}{{\left( { - \frac{2}{3}x + 4} \right)}^2}} \right]} dx \cr & {\text{Expanding and simplifying}} \cr & V = \int_0^6 {\left( {\frac{1}{9}{x^2} - \frac{4}{3}x + 4} \right)} dx \cr & {\text{Integrating}} \cr & V = \left[ {\frac{1}{{27}}{x^3} - \frac{2}{3}{x^2} + 4x} \right]_0^6 \cr & {\text{Evaluating}} \cr & V = \frac{1}{{27}}{\left( 6 \right)^3} - \frac{2}{3}{\left( 6 \right)^2} + 4\left( 6 \right) \cr & V = 8 \cr} $$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.