Calculus 8th Edition

Published by Cengage
ISBN 10: 1285740629
ISBN 13: 978-1-28574-062-1

Chapter 9 - Differential Equations - 9.3 Separable Equations - 9.3 Exercises - Page 645: 7

Answer

$\displaystyle \theta \sin(\theta) +\cos(\theta) =-\frac{1}{2e^{t^2}}+C$

Work Step by Step

$\displaystyle \frac{d\theta}{dt}=\frac{t\sec(\theta)}{\theta e^{t^2}}=\frac{t}{\theta\cos(\theta)e^{t^2}}$ Separation of variables: $\displaystyle \int\theta\cos(\theta)d\theta = \int\frac{t}{e^{t^2}}dt$ Integrate with respect to each variable: $\qquad\qquad\qquad$Left side: Integration by parts: $\displaystyle \int f\cdot g'dx = fg - \int f'\cdot gdx$ Let $ f = \theta$ and $g' = \cos(\theta)$ $\therefore f = 1\qquad g = \sin(\theta)$ $\displaystyle \int\theta\cos(\theta)d\theta = \theta \sin(\theta) - \int(1)\sin(\theta)d\theta$ $\qquad\qquad\qquad = \theta \sin(\theta) - [-\cos(\theta)]$ $\qquad\qquad\qquad = \theta \sin(\theta) +\cos(\theta) $ $\qquad\qquad\qquad$ Right side: $\displaystyle \int\frac{t}{e^{t^2}}dt = \int te^{t^{-2}}\qquad$let $u = t^{-2}\quad\rightarrow\quad du = -2t dt \quad\rightarrow\quad -\frac{1}{2}du = t dt$ $\displaystyle -\frac{1}{2}\int e^udu=-\frac{1}{2}e^u+C$ $\displaystyle -\frac{1}{2}e^{t^{-2}}+C=-\frac{1}{2e^{t^2}}+C$ Set the two sides equal to each other again: $\displaystyle \theta \sin(\theta) +\cos(\theta) =-\frac{1}{2e^{t^2}}+C$
Update this answer!

You can help us out by revising, improving and updating this answer.

Update this answer

After you claim an answer you’ll have 24 hours to send in a draft. An editor will review the submission and either publish your submission or provide feedback.